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Carbapenem antibiotics are of clinical importance because of
their high potency, broad spectrum of antimicrobial activity, and
resistance to most 3-lactamases.* Thienamycin (1) (Figure 1), the
most potent natural member of this family, co-occurs in Srepto-
myces cattleya with four carbapenems that are distinguished by their
C-2/C-6 substituents.? There are more than 50 known carbapenam/
em metabolites, many of which are differentiated only by the
oxidation state of their C-2/C-6 substituents. The C-6 ethyl side
chain of 1 is derived by C;-donations from methionine®* and can
be methyl, ethyl, or isopropyl, which can be saturated, unsaturated,
hydroxylated, or sulfated. Recent work has established that
coenzyme A is successively truncated by three enzymes encoded
by the thienamycin gene cluster to give the C-2 cysteamine moiety.®
This side chain can be pantetheine, but is generally cysteamine,
which can be N-acetylated or N-propionylated, desaturated and
further oxidized to the sulfoxide, or cleaved and oxidized in a
stepwise fashion to the sulfonic acid. These carbapenem metabolites
comprise a natural combinatorial library whose structural modifica-
tions temper the high intrinsic hydrolytic instability of the carbap-
enem nucleus, as well as affect the antimicrobia spectrum and
B-lactamase resistance of each family member.* Some of the higher
oxidation state carbapenems have either enhanced antibiotic activity
or increased f3-lactamase resistance, and so, in the broad context
of carbapenem biosynthesis, the origin of this oxidative diversity
is of particular interest.
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Figure 1. (a) Representative carbapenems. (b) The CarC-catalyzed reaction.
(c) Carbapenam thioethers synthesized in this study.

The variability of the carbapenem side chain oxidation state as
well as the discovery of a mutant strain® of Streptomyces cattleya
that produced deshydroxy thienamycin (10) instead of thienamycin
(1) led us to believe that the thienamycin gene cluster” encoded
one or more enzyme(s) capable of oxidizing the C-2/C-6 moieties
of carbapenems. Protein sequence analysis of ThnG and ThnQ
indicated that each enzyme contained the Hx(D/E)x,H motif
characteristic of nonheme Fe(l1)/a-ketoglutarate (a-K G)-dependent
dioxygenases, and these seemed promising candidates.® However,
ThnG and ThnQ are in the same family as CarC encoded by the
(5R)-carbapenem-3-carboxylate (13) gene cluster in Pectobacterium
carotoyorum.®*° Despite low homology to CarC, ThnG and ThnQ
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have been postulated to catalyze steps in thienamycin biosynthesis
analogous to the coupled C-5 epimerization and C-2/C-3 desatu-
ration of (2S5S)-carbapenam (11) to (5R)-carbapenem-3-carboxy-
late (13) catalyzed by CarC.** To discern their roles in thienamycin
biosynthesis, ThnG and ThnQ were analyzed for carbapenem-
oxidizing activity, as well as for the ability to catalyze C-5
epimerization and coupled or uncoupled C-2/C-3 desaturation of
carbapenams/ems.

The envisioned experiments required carbapenam/ems varying
in stereochemical configuration at C-6 aswell as C-2/C-6 oxidation
state/substitution pattern to serve as substrates and reference
standards. Two methods were employed to establish the C-6
substituent and C-5/C-6 configuration by synthesizing precursor
azetidinones. The first method provided the trans (3S4R)-config-
uration by alkylating the enolate of an azetidinone derived from
L-aspartic acid.®® The second method employed a catalytic asym-
metric azetidinone-forming reaction that produced either enantiomer
of the cis 3,4-disubstituted azetidinones with independent control
of the carbapenem C-8 stereocenter.™® These compounds could be
used as precursors of cis or trans carbapenems. Azetidinones were
converted to carbapenems by the Merck method, which allowed
various C-2 groups to be introduced.***® The intermediate 2-oxo-
carbapenams in this route can be reduced and directed to the
preparation of carbapenams bearing thioether substituents at C-2
(Figure 1c).> Carbapenam thioethers 14—17, (2S,5S)-carbapenam
(11), (2S,5R)-carbapenam (12),'° and 5-epi-PS-5 (6) were synthe-
sized to test ThnG and ThnQ for coupled or uncoupled carbapenam
ring epimerization and desaturation. PS-5 (5) was synthesized to
test for side chain oxidation activity, because the acetylated
cysteaminyl side chain is more stable than the unacetylated
deshydroxy thienamycin (10). PS-7 (7), PS-7 sulfoxide (9), PS-5
sulfoxide (8), N-acetyl thienamycin (2), and the diastereomeric
mixture (8SR)-N-acetyl thienamycin (4) were synthesized as
additional substrates and reference standards.

Thienamycin biosynthetic cluster genes thnG and thnQ were
cloned from genomic DNA and inserted into pET29b each bearing
a C-terminal Hiss-tag. The recombinant proteins were overproduced
in E. coli Rosetta2(DE3) and purified by Ni-NTA affinity chro-
matography. In vitro reactions in MOPS, pH 7.0, containing
Fe(NH,)2(SO,)2, 0-KG, ascorbate, the subject carbapenam/em, and
either ThnG or ThnQ were incubated and analyzed by HPLC for
the formation of new product(s).*"*® Clear outcomes were observed
for both ThnG- and ThnQ-catalyzed reactions with PS-5 (5) (Figure
2 and Supporting Information). The products were immediately
identifiable as carbapenems by their unique chromophores (Anax =
290—320 nm). ThnQ produced a single new product more polar
than 5, while ThnG produced two products, one with a shorter
retention time and one with a longer retention time than that of 5.

ESI mass spectrometric analysis of the new product (m/iz =
313.05) in the ThnQ-catalyzed reaction established that a single
oxygen had been incorporated. Its identity was determined by
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Figure 2. HPLC anaysis of ThnG and ThnQ reactions with PS-5 (5). (a)
PS-7 sulfoxide diasteriomers standard (9). (b) PS-7 standard (7). (c) ThnG-
catalyzed reaction with 5. (d) N-Acetyl thienamycin standard (2). (e) ThnQ-
catalyzed reaction with 5.

coinjection with N-acetyl thienamycin (2) and (8SR)-N-acetyl
thienamycin (4) (Figures 2d,e, S3). This HPLC comparison
demonstrated that ThnQ stereospecifically hydroxylated PS-5 (5)
to produce 2. The chromatographically distinct (8S)-N-acetyl
thienamycin diastereomer was not detected (Figure $4). ESI-MS
analysis of the products of the ThnG-catalyzed reaction with 5
indicated that the late eluting product (m/z = 295.05) had an
additional degree of unsaturation relative to 5, and the early eluting
product (m/z = 311.15) was both desaturated and oxidized. The
carbapenems were identified as PS-7 (7) and PS-7 sulfoxide 9 by
HPL C comparison to synthetic standards (Figures 2a—c, S5). ThnG
was also able convert 7 to its sulfoxide but unable to catalyze
desaturation when given PS-5 sulfoxide 8, indicating that desatu-
ration precedes sulfoxidation (Figure S6).

The oxidative relationships among carbapenems were further
demonstrated by conversion of PS-7 (7) and N-acetyl thienamycin
(2) into the S cattleya metabolite N-acetyl dehydrothienamycin (3).
Upon reaction with 2, ThnG produced a less polar product and
ESI-MS indicated it contained an additional degree of unsaturation.
ThnQ produced a more polar product on reaction with 7. These
new products coeluted under HPLC, had identical masses by ESI-
MS, and were assigned the same structure, N-acetyl dehydrothie-
namycin (3). Notably no sulfoxide product was observed, consistent
with the metabolite profilein S. cattleya and suggesting that ThnQ
reaction precedes that of ThnG.

HPLC analyses of other carbapenam/ems (6, 11, 12, 14—17)
tested with ThnG and ThnQ did not show appearance of a
carbapenem chromophore or other new products. Additionally, in
vitro reactions with carbapenam/ems (6, 11, 12, 14—17) employing
cell-free extracts harboring ThnG or ThnQ were analyzed with the
supersensitive E. coli SC 12155 and the Nitrocefin S-lactamase
induction assay using Bacillus licheniformis ATCC 14580.'%%° By
none of these three sensitive measures could antibiotic production
be detected.

These experiments demonstrate that the Fe(l1)/a-K G-dependent
oxygenases ThnG and ThnQ oxidize the C-2 and C-6 side chains,

respectively, of carbapenem substrates. No evidence was found that
they catalyze coupled or uncoupled C-5 epimerization and/or C-2/
C-3 desaturation in the carbapenam/ems tested. On these bases it
appears that the latter two reactions rely on other proteins encoded
by the thienamycin gene cluster that are distinct from the non-
heme iron oxygenases like CarC, key to the biosynthesis of (5R)-
carbpenem-3-carboxylate (13).1°**2 Oxidative modifications of
the C-2 and C-6 side chains of carbapenems are major determinants
of their antimicrobial spectrum and -lactamase resistance. These
activities strongly suggest that the known carbapenems produced
by S. cattleya arise from ThnG and ThnQ oxidation of a common
biosynthetic precursor and that much of the structural diversity
exemplified by this class of antibiotics likely derives from ortho-
logues present in other carbapenem producers. Knowledge of these
oxidative relationships will more sharply refine further biosynthetic
investigations of this antibiotic family.
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